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1 Introduction

Following Hansen (1982) it is established that in a GMM approach with more

moment conditions than the dimension of the parameter, the optimal variance of

the estimator is obtained if the empirical moments are weighted by the inverse of

the square root of the variance matrix of the moments. In this paper we investigate

Hansen’s result for linear inverse problems such as nonparametric instrumental vari-

ables regression and show that ”the optimal” weighting of Hansen (1982), which holds

in many special cases of GMM such as minimum distance estimation or IV estima-

tion, is no longer optimal once we have an infinite dimensional parameter of interest

and in such a case the optimal weighting should take into account the regularity of

the parameter of interest.

Consider the linear GMM problem corresponding to the following model:

yi = z′iβ + ui, E(ui|zi) 6= 0, i = 1, .., n.

Assume that we have a vector of instruments wi satisfying:

Cov(zi, wi) 6= 0, E(ui|wi) = 0 and V ar(ui|wi) = σ2.

Then the GMM estimator β̂ of β is given by β̂ = argminβ ‖wi(yi − ziβ)‖Ωn for any

symmetric and positive definite weighting matrix Ωn
p→ Ω. Given this structure, it is

straightforward to show that β̂ is asymptotically normally distributed:

√
n(β̂ − β)

d→ N (0, V ),
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where

V = σ2 (E(ziw
′
i)ΩE(wiz

′
i))
−1 E(ziw

′
i)ΩE(wiw

′
i)ΩE(wiz

′
i) (E(ziw

′
i)ΩE(wiz

′
i))
−1
.

Hansen (1982) shows that the optimal GMM estimator is obtained for Ω =

[E(wiw
′
i)]
−1 with asymptotic variance given by V = σ2 (E(ziw

′
i)ΩE(wiz

′
i))
−1. In this

paper we investigate if this optimality result still holds when the dimensions of zi

and wi are large or infinite. More generally, we investigate the question of optimal

weighting in linear inverse problems. This question may also be viewed as an exten-

sion of the usual Generalized Least Squares (GLS) method to the infinite-dimensional

case. In the GLS approach the optimal estimator is obtained by weighting the sum

of squares by the inverse of the variance of the residual. We will later show that this

property is no longer true in the case of linear inverse problems, i.e., if the solution

requires a penalty.

Optimal weighting in linear inverse problems can be motivated by the estimation

of simultaneous equations systems. Suppose y1i, y2i, z1i, z2i ∈ R satisfy the following

system:

y1i = φ(z1i) + ε1i

y2i = ψ(z2i) + ε2i,

where z1i and z2i are endogenous and there is a vector of valid and relevant instruments

wi such that E[(ε1i, ε2i)|wi] = 0. Moreover, ε1i and ε2i are potentially correlated. Note

that in this nonparametric set-up, if the system is estimated equation by equation,

it will lead to the usual nonparametric instrumental variables (NPIV) case. In this

paper, we aim to answer the question of how to include the information coming from

the error terms in the estimation procedure. We ask the question: Is it optimal to

3



estimate the equations jointly by including the information coming from V ar(ε|w)?

Nonparametric instrumental variables regression is an ill-posed inverse problem,

see Darolles, Fan, Florens, and Renault (2011); Newey and Powell (2003); Ai and Chen

(2003) and Horowitz (2011) among others. As a result, the solution of this problem

requires regularization. Among many solutions, Tikhonov Regularization provides a

good solution to this problem where the minimization is modified by an L2 penalty.

However, in return, this penalty introduces a regularization bias which vanishes under

certain conditions. We show that in the presence of regularization bias, the optimal

weighting matrix derived for parametric problems is no longer optimal due to the

contribution of the bias to the MISE. We then derive the optimal weighting operator

for a general class of linear inverse problems including nonparametric instrumental

variable regression.

From a mathematical viewpoint, the weighting problem can be considered as

follows: The ill-posed inverse problem we consider is an integral equation. If the

weighting operator is an integral operator, then we end up with a larger degree of

ill-posedness. In such a case, an intuitive approach would be to select the weighting

operator as a differential operator (such as inverse of variance operator) in order to

reduce the degree of ill-posedness. If it is defined, weighting means differentiation of

the equation before its resolution. However, the impact of weighting is not so clear

if we select the regularization parameter in an optimal way. For example, the rate

of decline of the bias is lower for a weighting operator which is an integral operator

but the optimal values of regularization parameter is smaller and hence the effect

is ambiguous. In this paper, we first derive the MISE of a weighted linear inverse

problem, then minimize the MISE for a fixed regularization parameter with respect

to the weighting operator. We find that the optimal weighting depends on both

the regularity of the function of interest and the rate of decay of eigenvalues of the
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variance of the noise. Given our result, we come up with unfeasible and feasible

optimal estimators and show that they are both consistent under the general set-up.

Finally, we investigate our theoretical findings by means of simulations.

This paper can be related to three strands of literature. First of all, as already

stated, one example of linear inverse problems in econometrics is nonparametric IV

estimation. Hence, this paper is closely related to nonparametric instrumental vari-

ables literature, see Darolles et al. (2011); Newey and Powell (2003); Ai and Chen

(2003) and Horowitz (2011) among others. Darolles et al. (2011) use a Tikhonov reg-

ularized kernel based estimator while Newey and Powell (2003); Ai and Chen (2003)

and Horowitz (2011) use sieve minimum distance (SMD) estimator. All these papers

show that the estimators they use are consistent however none of them considers

optimality of the estimator of the infinite dimensional parameter.

With the growth of nonparametric IV literature in the recent years, attention

has also been given to models that are semiparametric, where the parameter of in-

terest includes both an infinite-dimensional function and a finite-dimensional vector.

Florens, Johannes, and Van Bellegem (2012); Ai and Chen (2003); Chen and Pouzo

(2009) consider the estimation of these semiparametric models. Ai and Chen (2003)

and Chen and Pouzo (2009) focus on the efficiency of the estimator of the finite-

dimensional parameter and show that it reaches the semiparametric efficiency bound

when the weighting matrix is equal to the inverse of the variance covariance matrix

of moment conditions. To the best of our knowledge efficiency of the nonparametric

estimator in terms of mean integrated squared error (MISE) has only been considered

by Gagliardini and Scaillet (2012) within the framework of Tikhonov regularized non-

parametric IV estimation. The main contribution of Gagliardini and Scaillet (2012) is

the computation of an explicit asymptotic MISE for a Sobolev regularized estimator.

However, they do not investigate the optimality of their estimator with respect to the
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choice of the weighting matrix.

This paper is also related to the literature on GMM with a finite-dimensional

parameter of interest and with a continuum of moment conditions, see Carrasco and

Florens (2000, 2014). Both of these papers consider a continuum of moment condi-

tions when the parameter of interest is a finite dimensional vector. In such a case

Carrasco and Florens (2000) show that the optimal weighting matrix is not invertible

and this leads to an ill-posed inverse problem in the estimation. Hence, they propose

to use a regularized inverse. Carrasco and Florens (2014) show that this GMM es-

timator with a continuum of moment conditions which uses the regularized inverse

of the optimal weighting matrix reaches the efficiency of the MLE. The problem we

investigate in this paper is different since in our case the ill-posedness of the inverse

problem is not caused by the choice of the weighting matrix; but we analyze the

optimal choice of weighting operator for a problem which is ill-posed by construction.

Finally, the use of nonparametric techniques in structural models has increased the

interest in nonparametric estimation of simultaneous equations, see Matzkin (2015)

and Berry and Haile (2018). We believe that the light we shed on the optimal weight-

ing matrix in linear inverse problems will also contribute to nonparametric estimation

of simultaneous equations by leading to development of techniques such as nonpara-

metric three-stage least squares.

The paper proceeds as follows. In Section 2 we introduce our model. In Section 3

we examine the optimization of the MISE and present our result on optimal weighting.

We then introduce the optimal unfeasible and feasible estimators and present the

example of NPIV. In Section 4, we present simulation results which demonstrate

our theoretical findings as well as small sample properties of the optimal feasible

estimator. Finally, in Section 5 we conclude.
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2 The Set-up

Consider a linear inverse problem of the form:

r̂ = Kϕ+ U, (1)

ϕ ∈ E and r̂ and U ∈ F where E and F are Hilbert spaces. The operator K : E 7→ F

is a compact operator and U is a random element in F such that E(U) = 0 and

V(U) = 1
n
Σ where n is the sample size and Σ : F 7→ F is a trace-class (nuclear)

variance operator.1 The value r̂ is a noisy observation of r = Kϕ with a variance of

1
n
Σ. The element r̂ is observed and K and Σ are given.2

Let L be a differential operator defined on E such that L is densely defined, self

adjoint and L−1 is a compact operator from E 7→ E . Moreover consider a weighting

operator A : F 7→ F . Assume that r̂ ∈ D(A) where D(A) ⊂ R(K) and ϕ ∈ D(L).3

In case of a well-posed inverse problem, to solve for ϕ, the strategy would be to

minimize ‖Ar̂ − AKϕ‖2 and in order to minimize the variance of the estimator an

optimal choice would be A = Σ−
1
2 . Consider the general ill-posed inverse problems.

The Tikhonov regularized estimator using a Hilbert scale penalty is defined as the

solution of:

min
ϕ
‖Ar̂ − AKϕ‖2 + α‖Lϕ‖2 (2)

and it is equal to:

ϕ̂α = (αL∗L+K∗A∗AK)−1K∗A∗Ar̂. (3)

1We assume that the variance of U is given by 1
nΣ, however 1

n is not essential and it is assumed
for the sake of exposition. One can replace 1

n by δn which should approach to 0 as n tends to infinity.
2K and Σ are assumed to be given for simplicity and this assumption can be relaxed.
3Note that in this section we introduce the problem of optimal weighting under a general setting.

In Section 3.2, we show that one can define a NPIV problem under this setting. This setting can
also be shown to fit to cases such as deconvolution problems (Carrasco, Florens, and Renault, 2007)
or functional instrumental variables regression (Florens and Van Bellegem, 2015).
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If L is invertible, equation (3) can be rewritten as:

ϕ̂α = L−1(αI + L−1K∗A∗AKL−1)−1L−1K∗A∗Ar̂. (4)

Here we consider Tikhonov regularization with Hilbert Scale penalty. This approach

leads to regularization with a smooth norm as well as it gives higher convergence rates

than with Tikhonov regularization with L2 penalty if the true function is smooth

enough, see Neubauer (1988). Note that, Krein and Petunin (1966) show that the

Sobolev Spaces Hs(Rn) build a Hilbert scale. Hence a Hilbert scale penalty is equiv-

alent to penalization in Sobolev norm, which needs the assumption that the function

of interest belongs to a Sobolev space, i.e. has square integrable derivatives up to

a finite order. Gagliardini and Scaillet (2012) show with Monte Carlo simulations

that Tikhonov regularization with Sobolev penalty increases the performance of the

estimator compared to the one which is obtained with Tikhonov regularization with

L2 penalty.

In the sequel, we work with the spectral representation of the model. For the ease

of exposition we assume the following:

Assumption 1 There exist φj and ψj for j = 1, 2, ...,∞ such that φj is an orthonor-

mal base of E and ψj is an orthonormal base of F . There also exist λKj, λAj and

λL−1j which satisfy the following properties:

(i) (φj)
∞
j=1’s are the eigenvectors of K∗A∗AK with eigenvalues λ2

Kjλ
2
Aj and:

A∗AKφj = λ2
AjλKjψj.

(ii) (φj)
∞
j=1’s are the eigenvectors of L−1∗L−1 with eigenvalues λ2

L−1j
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The first part of Assumption 1 can be rephrased in the following way: K∗A∗AK

has a discrete spectrum characterized by the eigenvectors φj and the eigenvalues µ2
j .

This assumption is essentially a regularity assumption which may be extended to

the case of continuous spectrum. Indeed, the main assumption is that A∗AKφj = ψ̃j

constitute an orthogonal family in F . In this case, one can normalize the ψ̃j in ψj and

there exists positive numbers ρj such that A∗AKφj = ρjψj where ψj is an orthonormal

family of F . Finally λKj and λAj can be defined by the following relations:

µj = λ2
Kjλ

2
Aj and ρj = λKjλ

2
Aj.

This assumption can be satisfied by defining φj, ψj and λ2
Kj as the singular value

decomposition of K and by choosing A such that the eigenvectors of A∗A are ψj.

Then ψj are also the eigenvectors of AA∗ and λ2
Aj are the eigenvalues of A∗A. The

second part of Assumption 1 limits the possible choices for L by imposing previously

defined φj to be the eigenvectors of L−1∗L−1.

Under Assumption 1, the spectral representation of the model in equation 1 can

be written as:

〈r̂, ψj〉 = 〈Kϕ,ψj〉+ 〈u, ψj〉, (5)

〈r̂, ψj〉 = λKj〈ϕ, φj〉+
1√
n
〈Σψj, ψj〉1/2εj, (6)

〈ϕ̂α, φj〉 =
λ2
L−1jλ

2
AjλKj

α + λ2
L−1jλ

2
Ajλ

2
Kj

〈r̂, ψj〉, (7)

where E(εj) = 0, V ar(εj) = 1. The representation given in Equation 6 is standard

in the literature of inverse problems. Especially, in statistical models, the noise U

is assumed to be random contrary to deterministic which is, in general, the case in

ill-posed inverse problem literature. Hence, this notation captures the fact that the
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model in Equation 1 can be written as Gaussian white noise model when Σ = I, see

Cavalier (2008). In econometric applications the model is not a white noise model

because the variance of the noise, 1/n〈Σψj, ψj〉 also declines with j, see Knapik,

van der Vaart, van Zanten et al. (2011). Moreover, it can be seen from Equation 7

that the ill-posedness is coming from the decay of λKj, i.e., λKj → 0 as j →∞ which

then implies that small changes in r̂ may explode the solution of ϕ̂ in the case of no

regularization (when α = 0).

Given the spectral representation of the model introduced in equations 5 to 7

above, Proposition 1 states the mean integrated square error of the regularized esti-

mate ϕ̂α:

Proposition 1 The MISE of ϕ̂α is given by:

E‖ϕ̂α − ϕ‖2 =
1

n

∞∑
j=1

〈Σψj, ψj〉λ2
Kjλ

4
Ajλ

4
L−1j

(α + λ2
Kjλ

2
Ajλ

2
L−1j)

2
+ α2

∞∑
j=1

〈ϕ, φj〉2

(α + λ2
Kjλ

2
Ajλ

2
L−1j)

2
. (8)

Proof.

E‖ϕ̂α − ϕ‖2 = tr[V(ϕ̂α)] + ‖ϕα − ϕ‖2,

where ϕα = L−1(αI + L−1K∗A∗AKL−1)−1L−1K∗A∗AKϕ. Using some elementary

manipulations and the property that L−1 commute with K∗A∗AK we get:

E‖ϕ̂α−ϕ‖2 =
1

n
tr[(αI+B)−1L−1K∗A∗AΣA∗AKL−1(αI+B)−1]+‖α(αI+B)−1ϕ‖2,

where B = L−1K∗A∗AKL−1. Using the property that tr(Ω) =
∑∞

j=1 〈Ωδj, δj〉, we get

the result.

As can be seen from the MISE expression in (8), L−1 plays the same role as A.

Then the same value can be obtained either by weighting by A or by penalizing by

LA−1. Hence, in the following sections, we just consider weighting by A but our result
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may be reinterpreted in terms of Hilbert scale penalization.

Going back to the discussion of Assumption 1, it is an important assumption

and it limits our presentation. In particular, in the general case, choosing A = Σ−
1
2

does not necessarily satisfy this assumption. However, for some important cases such

as NPIV, this assumption allows Σ−
1
2 as a possible choice for A.4 The importance

of Assumption 1 may be underlined by the following remark: Consider the MISE

expression given in Proposition 1 and consider a case where α = 0 is possible, for

example a finite dimensional case. In such a case, under Assumption 1, λ2
Aj disappears

and the choice of A has no impact on the MISE of the estimator. It should be noted

that in our framework, the possibility of choosing an optimal weighting operator is

due to the trade-off between the variance and bias; it is not due to the minimization

of the variance only as in the GMM literature. In the GMM case, a higher order

asymptotic expansion of the estimator is necessary to introduce such a trade-off and

it leads to an optimality result, see Newey and Smith (2004). In other words, we can

say that Assumption 1 is relevant only in the ill-posed case, as the weighting would

cancel out in the usual parametric case once we impose Assumption 1.

The estimation strategy which minimizes the risk measured by the MISE consists

of the choice of a regularization parameter α and a weighting operator A which

minimize E‖ϕ̂α−ϕ‖2 at n, K and Σ fixed. The related result is presented in the next

section.

3 MISE Optimisation

Consider the case where the regularization parameter α is fixed so are the φj and

ψj families and the eigenvalues λKj . Given Assumption 1, the optimization is not

4We discuss this assumption in the case of NPIV in Section 4.
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on the full space of the operator A. The weighting operator A is constrained by the

eigenvectors φj and ψj and the optimization is done over its eigenvalues λAj. The

MISE expression in Proposition 1 leads to the following result:

Proposition 2 1. The optimal value for the sequence λ2
Aj is given by:

λ2
Aj =

〈ϕ, φj〉2

〈Σψj, ψj〉
αn.

2. This choice leads to the optimal (unfeasible) estimator:

ϕ̂u =
∞∑
j=1

〈ϕ, φj〉2λKj〈r̂, ψj〉
1
n
〈Σψj, ψj〉+ 〈ϕ, φj〉2λ2

kj

φj,

ϕ̂u = (
1

n
Q+K∗K)−1K∗r̂,

where Q is the operator:

Q : E 7→ E : g 7→ Qg =
∞∑
j=1

〈Σψj, ψj〉
〈ϕ, φj〉2

〈g, φj〉φj for g ∈ E .

3. Then the MISE of the optimal estimator is given by:

1

n

∞∑
j=1

λ2
Kj〈Σψj, ψj〉(

1
n

〈Σψj ,ψj〉
〈ϕ,φj〉2 + λ2

Kj

)2 +
∞∑
j=1

〈Σψj, ψj〉2

〈ϕ, φj〉2
(

1
n

〈Σψj ,ψj〉
〈ϕ,φj〉2 + λ2

Kj

)2 .

The proof is presented in Appendix A.

This result differs from the standard result for GMM. In the usual case the op-

timal λ2
Aj is proportional to 1

〈Σψj ,ψj〉 . In the infinite-dimensional case with penalty,

the optimal choice incorporates the smoothness of ϕ through the Fourier coefficients

〈ϕ, φj〉2. The optimal choice for A is then unfeasible because it depends on the un-
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known function ϕ. The estimator ϕ̂u may be viewed as an oracle estimator and it

does not depend on α. Equivalently, one can say that α is replaced by 1/n. Note that

the value of the MISE does not depend on α either. In some sense, the introduction

of the 〈ϕ, φj〉2 replaces the choice of α.

The estimator ϕ̂u can be interpreted as a Hilbert scale type extension of Tikhonov

estimation. Indeed, ϕ̂u is the argument ϕ that minimizes the following:

ϕ̂u = argmin
ϕ
‖r̂ −Kϕ‖2 +

1

n
‖Q1/2ϕ‖2.

Note that, the operator A may be a differential or an integral operator depending

on the relative rate of decline of the Fourier coefficients of ϕ and of the 〈Σψj, ψj〉.If∑
j
〈Σψj ,ψj〉
〈ϕ,φj〉2 < ∞, A−1 becomes an integral operator and A is then a differential

operator (as Σ−1/2 in the parametric case). If, on the other hand,
∑

j
〈ϕ,φj〉2
〈Σψj ,ψj〉 <∞, A

is a Hilbert-Schmidt integral operator. In other words, if ϕ is sufficiently regular, A

becomes an integral operator. Or if we reconsider Hilbert Scale penalization, it means

L becomes a differential operator. This result is very intuitive: if ϕ is sufficiently

smooth regarding to Σ, a penalization by the norm of the derivative is optimal.

Note that this idea was supported before by Gagliardini and Scaillet (2012). They

suggest to penalize the derivatives of the unknown function to prevent oscillations in

the estimated function. This result is also in line with Newey and Powell (2003)’s

restriction of the parameter space. Tikhonov regularization with Hilbert scale penalty

can be interpreted as minimization of ‖Kϕ− r‖ subject to the constraint ‖Lϕ‖ < ρ

for some ρ, see Carrasco et al. (2007). In other words, it is equivalent to looking for

a solution in a space where the norm of the derivatives of the functional parameter is

bounded as in Newey and Powell (2003). Moreover, this case where ϕ is sufficiently

smooth, optimal weighting can be interpreted as optimal norm. More precisely, given
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a regularization parameter α, our result suggests that it is optimal to use a Sobolev

penalty.5

Regarding the consistency of ϕ̂u, it is intuitive to think that it is consistent as it

has a smaller MISE than the MISE of ϕ̂α given in Equation 1 which converges to zero

as n → ∞, nα → ∞ and α → 0. The assumption below is needed for the formal

proof of consistency of the optimal unfeasible estimator as well as for calculation of

its rate of convergence.

Assumption 2

∞∑
j=1

〈ϕ, φj〉2(1−β)〈Σψj, ψj〉β

λ2β
Kj

<∞ ∀ β ∈ [0, 1).

One can note the similarity of Assumption 2 and the source condition which has

already been stated in papers such as Darolles et al. (2011) and Florens et al. (2012).

Assumption 2 does not only state the regularity space which the function ϕ belongs

to but it states a regularity space for both the function ϕ and the variance of the

noise. Hence Assumption 2 can be seen as an extended source condition. The next

theorem states the rate of convergence of ϕ̂u under this extended source condition.

Theorem 1 Assume that Assumptions 1 and 2 hold. Then:

E‖ϕ̂u − ϕ‖2 = Op(n
−β).

Theorem 1 shows that the unfeasible estimator is consistent and it converges with

a rate of n−β which is slower than the usual parametric rate. Though, this is not

surprising. The optimal unfeasible estimator is also a nonparametric estimator, and

by weighting we optimize its small sample MISE, not its asymptotic MISE. Moreover,

5We thank Damien Pouzo for making this point.
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this oracle estimator has a faster rate of convergence than the minimax rate of the

unweighted estimator which is Op(n
− β
β+1 ).

3.1 The Optimal Feasible Estimator

Although Proposition 2 provides the optimal estimator, it is not feasible as it

depends on the smoothness of the unknown function, ϕ. In this section, we construct

optimal feasible estimator. A natural idea is to construct a two-step estimator. In

a first step, ϕ is estimated using Tikhonov regularization with a regularization pa-

rameter α and in a second step, we replace 〈ϕ, φj〉2 by its estimator in the optimal

weighting operator.

The first-step regularized estimate of ϕ is given by:

ϕ̂α =
∑
j

λKj
α + λ2

Kj

〈r̂, ψj〉φj.

Then, 〈ϕ, φj〉 can be replaced by:6

〈ϕ̂, φj〉 =
λKj

α + λ2
Kj

〈r̂, ψj〉.

Hence the feasible estimator is equal to:

ϕ̂f =
∑
j

λ3
Kj〈r̂, ψj〉3

1
n
(α + λ2

Kj)
2〈Σψj, ψj〉+ λ4

Kj〈r̂, ψj〉2
φj. (9)

As can be seen from Equation 9, the feasible estimator does depend on α through its

dependence on first stage estimator, ϕ̂α. Also, note that ϕ =
∑

j
1

λKj
〈r, ψj〉φj so the

usual Tikhonov regularized estimator is obtained by replacing 1
λKj

by
λKj

α+λKj
. Hence,

6As λKj → 0 very fast, this prevents us estimating ϕ by 〈ϕ̂, φj〉 = 1
λKj
〈r̂, ψj〉φj even though r

can be estimated with a
√
n-rate.
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the feasible estimator ϕ̂f is also regularized where 1
λKj

is replaced by:

λKj
1
n
(α + λ2

Kj)
2 〈Σψj ,ψj〉
λ2Kj〈r̂,ψj〉2

+ λ2
Kj

. (10)

Equation (10) can also be written as
λKj

αj+λ2Kj
i.e., once the first step estimation is

done, the second step can be seen as regularization with a sequence of αj. The next

theorem states the consistency of the optimal feasible estimator. The proof follows

from Engl, Hanke, and Neubauer (1996) and it is presented in Appendix A.

Theorem 2 Consider the feasible estimator given in Equation 9. Assume that α is

fixed. Then as n→∞:

‖ϕ̂f − ϕ‖
p→ 0

Theorem 2 shows that the optimal feasible estimator is consistent and the consistency

can be achieved with a fixed regularization parameter, in other words, we do not need

α → 0. As it is shown in the proof in Appendix A3, in this case, the role of α is

replaced by 1
n
. This result is very important as it does not only show the consistency

of the optimal feasible estimator but it also eliminates the problem of selection of

optimal regularization parameter.7 Next remark discusses very briefly the case with

unknown K and Σ.

Remark 3 If K and Σ are unknown, one needs to use estimators for K and Σ which

will give estimates for λKj, φj and ψj. In such a case, λKj, φj and ψj in Equation 9

could be replaced by their estimates λ̂Kj, φ̂j and ψ̂j and the proof of consistency should

take into account these estimated values.

7This result is supported by our simulation study in Appendix B.2
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3.2 Example: Nonparametric IV Regression

In this section we consider optimal weighting in non-parametric instrumental vari-

able regression setting. NPIV regression has been well studied in many papers; see

Carrasco et al. (2007); Darolles et al. (2011); Hall and Horowitz (2005) among oth-

ers. However, to the best of our knowledge, none of these papers has considered the

optimality of the infinite dimensional parameter before. Below, we present optimal

unfeasible and feasible estimators under this setup.

Consider a vector of random elements (Y, Z,W ) such that:

Y = ϕ(Z) + U and E(U |W ) = 0. (11)

The model then generates a linear inverse problem:

E(E(Y |W )|Z) = E(E(ϕ(Z)|W )|Z), (12)

r = Kϕ, (13)

where r ∈ L2
Z , ϕ ∈ L2

Z and K : L2
Z 7→ L2

Z . We assume that all the L2 spaces are

related to the true distribution. We have a noisy observation of r, r̂, and we assume

that K is given, then one can write:

r̂ = Kϕ+ U. (14)

We assume that E(U) = 0 and V(U) = σ2

n
K where σ2 is known. The operator K is

a self-adjoint trace class operator which has been discussed in many previous papers,

see Carrasco et al. (2007); Darolles et al. (2011).

Note that this model has a particular feature as Σ and K are equal up to a
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multiplicative order. This means that the choice of A = Σ−
1
2 is possible in this set-up

and it would result in K∗A∗AK = K, the φj(= ψj) being the eigenvectors of K and

A∗AK = I. More precisely, in this case λAj = λ
1/2
Kj . Although A = Σ−1/2 is a possible

choice for the weighting operator, it is not optimal due to regularization.

Given this setup, using the result (ii) in Proposition 2, the unfeasible estimator

can be written as:

ϕ̂u,IV =
∞∑
j=1

〈ϕ, φj〉2λKj〈r̂, ψj〉
σ2

n
λKj + 〈ϕ, φj〉2λ2

Kj

φj. (15)

Define the operator R such that R : E 7→ E : g 7→ Rg =
∑∞

j=1〈ϕ, φj〉2〈g, φj〉φj. Then

the unfeasible estimator can be rewritten as:

ϕ̂u,IV =

(
σ2

n
K +RK∗K

)−1

RK∗r̂. (16)

To obtain the feasible estimator, 〈ϕ, φj〉 in Equation 15 is replaced by
λKj

α+λ2Kj
〈r̂, ψj〉:

ϕ̂f,IV =
∞∑
j=1

〈r̂, ψj〉2
σ2

n
(α + λ2

Kj)
2 + λ3

Kj〈r̂, ψj〉2
λ2
Kj〈r̂, ψj〉φj. (17)

Define operator T such that T : E 7→ E : g 7→ Tg :
∑∞

j=1〈r̂, ψj〉2〈g, φj〉φj. Then the

feasible estimator can be rewritten as:

ϕ̂f,IV =

(
σ2

n
(αI +K2)2 +K3T

)−1

KTK∗r̂. (18)

4 Simulations

In this section we present simulations to show the performance of the unfeasible

and the feasible optimal estimators compared to that of the unweighted estimator. We

conduct two different types of simulations. The first group, numerical illustrations,
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for which we generated the eigenvalues and compute the MISE for the unweighted,

the weighted unfeasible and weighted feasible estimators. In the second group of

simulations, we conduct a Monte Carlo experiment. We generate data from an NPIV

model and estimate the unknown function for a given K using weighted feasible

estimator and unweighted estimator and we compute their MISE. We then extend

this IV simulation to the semiparametric case in which we assume that the operator K

is known to be coming from a normal family with an unknown variance. Numerical

illustration and results of Monte Carlo simulations show that the feasible optimal

estimator performs better than unweighted estimator.

4.1 Numerical Illustration

In this set of simulations, using the spectral representation given in Equations 5

to 7, we generate eigenvalues of the model and compute the MISE for the unweighted

estimator (ϕ̂α), the optimal unfeasible estimator (ϕ̂u) and the optimal feasible esti-

mator (ϕ̂f ).

Given Equations 5 to 7, we generate λKj, 〈ϕ, φj〉 and 〈Σψj, ψj〉 under the assump-

tions of geometric and exponential spectra. In the geometric spectrum case, we posit

that:

λKj =
1

ja
, 〈ϕ, φj〉 =

1

jb
, 〈Σψj, ψj〉 =

1

j2c
,

for j = 1, ..., 1000, sample size n = 100 and a = 4, b = 3 and c = 1. Then the MISE

is calculated by using the following formula:

MISE = E

[∑
j

(
〈Φ, φj〉 −

1

jb

)2
]

where Φ = {ϕ̂α, ϕ̂u, ϕ̂f}.
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In the case with the exponential spectrum, we posit the following:

λKj = ρj, 〈ϕ, φj〉 = ρjβ, 〈Σφj, φj〉 = ρ2jµ,

for j = 1, .., 100, ρ = 0.6, µ = 1 and β = 0.5. Then for Φ = {ϕ̂α, ϕ̂u, ϕ̂f}, the MISE

is given by:8

MISE = E

[∑
j

(
〈Φ, φj〉 − ρjβ

)2

]
.

In both set of simulations we use the optimal value of α given our design. To be more

precise, given a grid of values for α, we select the one which minimizes the MISE of

the ϕ̂f .
9 The results are presented in Table 1.

Table 1: Numerical Illustration

MISE

ϕ̂α ϕ̂u ϕ̂f αopt

Geometric 0.0710 0.0271 0.0593 0.0223

Exponential 0.5374 0.0973 0.3501 0.1220

Two main results can be reached from Table 1. First of all, unsurprisingly, the

smallest MISE is obtained with unfeasible estimator. Hence, the weighting does

decrease the MISE compared to the case where no weighting is used. Secondly, the

feasible estimator, as well, performs better than the unweighted estimator. Hence, by

using the two step feasible estimator one can improve the MISE. In the next section,

we present Monte Carlo simulations to compare the performance of optimal feasible

estimator and unweighted estimator in the NPIV setup.

8In the exponential spectrum case, eigenvalues decay to zero much faster than in the geometric
spectrum case. For this reason, we take jmax=100 instead of 1000 in this set of simulations.

9We also conduct simulations where we select α which minimizes the MISE of the first step
estimator ϕ̂α. The results are qualitatively the same, see Table 4 in Appendix B.
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4.2 Monte Carlo Experiment: Nonparametric IV Regression

4.2.1 Known K

We generate the data as the following: X and Z are drawn from a multivariate

normal distribution with mean (0 0)′ and variance

1 ρ

ρ 1

 where we fix ρ to be

equal to 0.6. Moreover, U is drawn from a univariate normal distribution with 0 mean

and variance equal to 0.01.10 We generate ϕ to be equal to ϕ = Z2−1√
2

. Then Y is

given by:

Y =
Z2 − 1√

2
+ U.

We chose a geometric spectrum, so the eigenvalues are given by λKj = ρ2j and the

basis functions φj(Z) and ψj(X) are generated using Hermite polynomials. Given

this set-up, we estimate unweighted ϕ using the following:

ϕ̂α(z) =
∑
j

λKj
α + λ2

Kj

(
1

n

n∑
i=1

yiφj(zi)λ
1/2
Kj

)
φj(z). (19)

Then the scalar product can be written as:

〈ϕ̂α, φj〉 =
λKj

α + λ2
Kj

(
1

n

n∑
i=1

yiφj(zi)λ
1/2
Kj

)
. (20)

We use first stage estimate ϕ̂α to obtain 〈ϕ̂α, φj〉 and Û - which is then used to

compute σ̂2
u - to obtain the feasible estimator:

ϕ̂f (z) =
∑
j

〈ϕ̂α, φj〉2λKj
(

1
n

∑n
i=1 yiφj(zi)λ

1/2
Kj

)
1/nσ̂2

uλKj + 〈ϕ̂α, φj〉2λ2
Kj

φj(z). (21)

10We also tried different values for the variance of U , our results stay the same qualitatively.
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We replicate this exercise 100 times for a sample size equals to 200. We truncate the

sum at j = 25. As for the regularization parameter, α, we select it in two different

ways. In the first set of simulations, given a grid of values of α, we select the one which

minimizes the MISE of the first stage estimator, and in the second set of simulations,

we select the one which minimizes the MISE of the optimal feasible estimator. Table

2 shows the MISE of the unweighted and weighted optimal estimators under two

different selection rules for α. Not surprisingly, the feasible estimator performs better

when α is selected in the second stage, i.e., when the optimal α is selected as the

minimizer of the MISE of the second step estimator. However, when α is selected at

the first stage unweighted estimator has a smaller MISE. Moreover, α chosen with

respect to first step estimator is larger than α chosen with respect to second step

estimator showing that optimal estimator requires undersmoothing at the first stage.

Figures 1 and 2 confirm these results. The unweighted estimator is closer to the true

curve in Figure 1, whereas it is the optimal feasible estimator which is closer the true

curve in Figure 2. Figure 3 shows the plots of ϕ̂f for all draws over the true function

where α is chosen with respect to the second step estimator.

We can conclude that for a known K optimal weighted estimator performs better

than unweighted estimator. However, in an empirical application, it is unlikely that

one knows K. In the next section, we analyze the case when K is partially known.11

Table 2: IV simulation results - K known

MISE
ϕ̂α ϕ̂f αopt

α1s
opt first stage 0.3745 2.2020 0.0541
α2s
opt second stage 0.5828 0.2795 0.0310

11Although we developed the theory for knownK throughout the paper, in Appendix B we present
Monte Carlo simulation results in the case of NPIV when K is unknown.Theoretical analysis with
unknown K is left for future work.
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Figure 1: Simulation result with one draw for α1s
opt

Note: α is selected in order to minimize the MISE of the first step estimator.

Figure 2: Simulation result with one draw for α2s
opt

Note: α is selected in order to minimize the MISE of the second step estimator.
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Figure 3: Simulation result with 100 draws

Note: α is selected in order to minimize the MISE of the second step estimator. Green dots are the

estimated curve by using optimal feasible estimator at each draw while the blue dots are unweighted

estimates.

4.2.2 Partially Known K

In this set of simulations, the data is generated in the same way as in Section 5.2.1.

The only difference is that we no longer assume that the operator K is fully known

but the relation Σ = σ2K still holds. We instead assume that the operator K is

from a normal family with an unknown variance. Hence, the eigenvalues are given by

λKj = ρ̂2j where ρ̂ is an estimator for the covariance of X and Z. ϕ̂α and ϕ̂f can then

be obtained using Equations 19 to 21. We replicate the model and the estimation 100

times for samples of size 200. The regularization parameter α is selected as in the

case with known K. The results are presented in Table 3 and Figures 4 to 6. Optimal

feasible estimator again performs better when α is selected to minimize MISE at the
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second stage. Moreover, contrary to the case with known K, to get better fit for ϕ̂f ,

one needs to oversmooth at the first stage as α2s
opt is larger than α1s

opt.

Table 3: IV simulation results - K partially known

MISE
ϕ̂α ϕ̂f αopt

α1s
opt first stage 0.3501 0.6894 0.0111
α2s
opt second stage 0.5925 0.3058 0.0351

Figure 4: Simulation result with one draw for α1s
opt

Note: α is selected in order to minimize the MISE of the first step estimator.

5 Conclusion

In this paper we examine the question of optimal weighting in linear inverse prob-

lems. We have several results. First of all, under a very general set-up, we have shown

that weighting and Hilbert scale penalty play the same role. Hence, one may fix one

of these operators to identity. Secondly, we have found that the optimal weighting
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depends on the regularity of the function of interest and on the variance of the noise.

A conjecture would be to equalize the regularity of ϕ and the sum of the degree of

ill-posedness of A and Σ. Third, given our results on optimal weighting we have come

up with the optimal feasible estimator and shown that it is consistent and its consis-

tency does not depend on the regularization parameter. Finally, we have supported

our theoretical findings by means of Monte Carlo simulations.

This paper can be considered as the first of a series of papers on this topic. We

leave establishing the oracle properties for the optimal feasible estimator and the

treatment of the problem when K and Σ are unknown for future work. We believe

that our results will contribute to the literature on the nonparametric estimation of

simultaneous equations. Hence, the development of nonparametric three stage least

squares estimator using this optimal weighting matrix is also left for future work.

Figure 5: Simulation result with one draw for α2s
opt

Note: α is selected in order to minimize the MISE of the second step estimator.
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Figure 6: Simulation result with 100 draws

Note: α is selected in order to minimize the MISE of the second step estimator. Green dots are the

estimated curve by using optimal feasible estimator at each draw while the blue dots are unweighted

estimates.
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Appendices

A Proofs

A.1 Proof of Proposition 2

Proof. We first minimize the MISE given in Proposition 1 with respect to λ2
Aj which

gives the first result. Note that ϕ̂α is given by:

ϕ̂α =
∑
j

λKjλ
2
Aj

α + λ2
Kjλ

2
Aj

〈r̂, ψj〉ϕj.

Then the second result is obtained by replacing optimal λ2
Aj in the above equation.

Finally, the third result is obtained by substituting λ2
Aj by

〈ϕ,φj〉2
〈Σψj ,ψj〉αn in the MISE

formula.

A.2 Proof of Theorem 1

Proof. If we replace the λ2
Aj by

〈ϕ,φj〉2
〈Σψj ,ψj〉αn in the MISE formula given in Proposition

1, we obtain the MISE of the optimal unfeasible estimator:

E‖ϕ̂u − ϕ‖2 =
1

n

∞∑
j=1

〈Σψj, ψj〉λ2
Kj(

1
n

〈Σψj ,ψj〉
〈ϕ,φj〉2 + λ2

Kj

)2 +
1

n2

∞∑
j=1

〈Σψj, ψj〉2

〈ϕ, φj〉2
(

1
n

〈Σψj ,ψj〉
〈ϕ,φj〉2 + λ2

Kj

)2 .

In the above MISE, the first term is the variance whereas the second term is the bias

square. We will analyze them separately. Let us first consider the bias term. If we

divide and multiply it by
〈ϕ,φj〉2
〈Σψj ,ψj〉2 , we obtain the following after some manipulation:

1

n2

∞∑
j=1

〈ϕ, φj〉2(
1
n

+
〈ϕ,φj〉2
〈Σψj ,ψj〉λ

2
Kj

)2 . (22)

31



Denote x =
〈ϕ,φj〉2
〈Σψj ,ψj〉λ

2
Kj. If we divide and multiply Equation 22 by xβ:

1

n2

∞∑
j=1

〈ϕ, φj〉2

xβ
xβ

(1/n+ x)2
,

where xβ

(1/n+x)2
is Op(n

2−β). Then the whole bias term is Op(n
−β) and under assump-

tion 2, bias goes to 0 as n→∞. We now examine the variance term. As before, after

some manipulation the variance term can be rewritten as:

1

n

∞∑
j=1

〈ϕ, φj〉2λ2
Kj
〈ϕ,φj〉2
〈Σψj ,ψj〉(

1
n

+ λ2
Kj
〈ϕ,φj〉2
〈Σψj ,ψj〉

)2 . (23)

As is done with the bias term, denote x =
〈ϕ,φj〉2
〈Σψj ,ψj〉λ

2
Kj, and divide and multiply

Equation 23 by xβ, one obtains:

1

n

∞∑
j=1

〈ϕ, φj〉2

xβ
xβ+1

(1/n+ x)2
.

The term xβ+1

(1/n+x)2
is Op(n

−1) and the whole variance term is Op(n
−β). Thus under

our extended source condition, the variance term as well vanishes as n→∞.

A.3 Proof of Theorem 2

Proof. The proof follows by Theorem 4.1 and Theorem 4.2 in Engl et al. (1996).

One can decompose ‖ϕ̂f − ϕ‖ as the following:

‖ϕ̂f − ϕ‖ = ‖ϕ̂f − ϕf‖︸ ︷︷ ︸
A

+ ‖ϕf − ϕ‖︸ ︷︷ ︸
B

32



We now show that both A and B converge to zero. Let us start with B. Note that

B captures the regularization bias and it can be shown to converge to zero by using

Theorem 4.1 in Engl et al. (1996). The theorem states that for gρ(x) such that

(1) |xgρ(x)| < C and (2) lim
ρ→0

gρ(x) =
1

x
for all x ∈ [0, ‖K‖2]

then

lim
ρ→0

gρ(K
∗K)Kφ = r

If one can verify (1) and (2) in the case of feasible estimation, then one can conclude

‖ϕf − ϕ‖ → 0. Using Equation 10, one can write gρ(x):

gρ(x) =
x 〈r̂, ψj〉2

ρ(α + x)2 〈Σψj, ψj〉+ x2 〈r̂, ψj〉2

where ρ = 1/n. Then:

lim
ρ→0

gρ(x) =
x 〈r̂, ψj〉2

x2 〈r̂, ψj〉2
=

1

x

It is straightforward to show the first condition as well, as:

|xgρ(x)| =

∣∣∣∣∣ x2 〈r̂, ψj〉2

ρ(α + x)2 〈Σψj, ψj〉+ x2 〈r̂, ψj〉2

∣∣∣∣∣ < 1

and it is bounded.

We now show that the term A, ‖ϕ̂f − ϕf‖ converges to zero in probability. The

result will follow from Theorem 4.2 in Engl et al. (1996). Define Gρ := sup{|gρ(x)||x ∈

[0, ‖T‖2]}. Then the theorem shows that:

‖ϕ̂f − ϕf‖ ≤
1√
n

√
CGρ
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sup gρ(x) is given when x =
√
x∗ where

x∗ =
1
n
α2 〈Σψj, ψj〉

〈r̂, ψj〉2 + 1
n
〈Σψj, ψj〉

Then

1

n
sup gρ(x) =

x∗ 〈r̂, ψj〉2

(α + x∗)2 〈Σψj, ψj〉+
α2〈Σψj ,ψj〉

〈r̂,ψj〉2+ 1
n
〈Σψj ,ψj〉

〈r̂, ψj〉2
(24)

Let us first examine x∗. After some manipulations, it can be rewritten as:

α2

n〈r̂,ψj〉2

〈Σψj ,ψj〉 + 1

The term in denominator is bounded which makes x∗ is of order O(1) for α fixed.Then

we can conclude that the numerator of Equation 24 is of order O(1). As for the

denominator of 24, the second term dominates so we can examine just that term.

One can write:

α2 〈Σψj, ψj〉
1
n
〈r̃, ψj〉2 + 1

n
〈Σψj, ψj〉

where r̃ = nr̂. Again for α fixed, this term is Op(n) and hence we can conclude that

24 is Op(1/n):

As n→∞, ‖ϕ̂f − ϕf‖2 p→ 0.
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B Simulation results

B.1 Numerical Illustration

Table 4: Numerical illustration results, α optimized with respect to first stage esti-

mator

MISE

ϕ̂α ϕ̂u ϕ̂f αopt

Geometric 0.0948 0.0273 0.0710 0.0236

Exponential 0.5105 0.0967 0.3379 0.1072

If we compare Tables 1 and 4, we see that the exponential spectrum requires over-

smoothing in the first step to improve the performance of the weighted feasible esti-

mator. Moreover, optimal feasible estimator performs always better than unweighted

estimator either one selects α at the first or second stage.

B.2 Monte Carlo Experiment: NPIV with unknown K

In this paper, we develop theory for optimal weighting in inverse problems as-

suming that the operator K is known. In this section, we present some Monte Carlo

evidence on the small sample performance of the optimal feasible estimator when K

is unknown.

The data is generated exactly the same way as in Section 5.2.1, however, we do

not assume that K is known, hence we cannot use Hermite polynomials to generate

the basis functions. In this case, one way to estimate the model is to estimate the

operator K, then obtain its eigenvalues and eigenvectors to estimate the function of

interest ϕ. The conditional expectation operator can be estimated following Carrasco
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et al. (2007). For a function f(t) and Kf(t) = E[f(t)|W = w], the kernel estimation

of K for a bandwidth hw is given by:

K̂nf(t) =

∑n
i=1 f(ti)K

(
w−wi
hw

)
∑n

i=1K
(
w−wi
hw

) =
∑

ai(f)εi,

where

ai(f) = f(ti) and εi =

 K
(
w−wi
hw

)
∑n

i=1K
(
w−wi
hw

)
 .

Note that in our problem K is given by Kϕ(Z) = E[E[ϕ(Z)|X]|Z]. Hence K̂ is given

by KZKX where the KZ and KX matrices are the ones with the following (i, j)th

elements:

Kz(i, j) =
Kz

(
zi−zj
hz

)
∑

jKz

(
zi−zj
hz

) ,

Kx(i, j) =
Kx

(
xi−xj
hx

)
∑

jKx

(
xi−xj
hx

) .
Given this K̂, the estimated eigenvalues λ̂2

j and eigenvectors φ̂j are given by the

eigenvalues and eigenvectors of K̂ ′K̂. Given these values, ϕ̂α and ϕ̂f can be estimated

using Equations 19 to 21. As in the previous Monte Carlo exercises, the model is

replicated for 100 times for samples of size 200 and the regularization parameter is

selected in the same two ways. The results are presented in Table 5 and Figures 7 to

9. Optimal feasible estimator performs better when α is selected to minimize MISE

at the second stage and to get better fit for ϕ̂f , one needs to slightly undersmooth

at the first stage as α2s
opt is smaller than α1s

opt. One final thing that can be noticed

from Table 5 is that the optimal feasible estimator looks less sensitive to different

values of α. Figure 10 below shows how MISE of the unweighted estimator and
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optimal feasible estimator change with different values of α. As can be seen from

Figure 10, optimal feasible estimator is less sensitive to regularization parameter.

The MISE of the optimal feasible estimator ranges between 0.5 and 1 whereas the

range is much broader for the unweighted estimator. Hence, with the weighting we

do not only improve the MISE of the estimator but we also make it more robust to

different values of regularization parameter. Given the importance of the selection of

smoothing parameters in nonparametric approaches, this result is very important. We

can say that optimal weighting makes the estimator more robust to different values

of smoothing parameter and hence decreases the need of finding the best selection

rule for α.

Table 5: IV simulation results - K unknown

MISE

ϕ̂α ϕ̂f αopt

α1s
opt first stage 0.2949 0.5332 0.0544

α2s
opt second stage 0.5954 0.3929 0.0287
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Figure 7: Simulation result with one draw for α1s
opt

Note: α is selected in order to minimize the MISE of the first step estimator.

Figure 8: Simulation result with one draw for α2s
opt

Note: α is selected in order to minimize the MISE of the second step estimator.
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Figure 9: Simulation result with 100 draws

Note: α is selected in order to minimize the MISE of the second step estimator. Green dots are the

estimated curve by using optimal feasible estimator at each draw while the blue dots are unweighted

estimates.

Figure 10: α vs. MISE
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